Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 351: 124061, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679131

ABSTRACT

Diffusive gradients in thin films technique (DGT) is recognized as a more reliable method for determining labile heavy metal (HM) concentration in soil than traditional destructive methods. However, the current DGT measurement index, CDGT, theoretically underestimates the true labile concentration (Clabile) of HMs in soil and lacks direct comparability with the conventional soil HM content indices due to unit differences. Here, we proposed CDGT-W, a new simple index which is defined as the HM accumulation in the binding layer, normalized to the weight of soil (optimized water content = 100% of the maximum water holding capacity) filled in the open cavity-type DGT device over a specified deployment time (optimized time = 24 h). The procedure for measuring CDGT-W is analogous to that of CDGT but includes precise determination of water content (water/dry soil) and the mass of soil filled in the cavity. We conducted measurements of Cu, Pb, Cr(Ⅵ) and As(V) as CDGT-W, CDGT, solution concentration (Csoln), and CaCl2 extractable concentration (CCaCl2) on three soils with a diverse range of HM concentrations. CDGT-W showed significant linear correlations with all other tested indexes. The ratios of CDGT-W to CCaCl2 varied between 0.30 and 0.98 for all HM-soil combinations with only one exception, a range much greater than CDGT/Csoln (typically <0.1) but lower than 1. This suggested that CDGT-W may more accurately reflect Clabile than CDGT (theoretically underestimates Cliable) and CCaCl2(likely overestimates Cliable). Additionally, CDGT-W measurements for these four HMs exhibited a broad measure concentration range and a low detection limit (mg/kg level). Consequently, CDGT-W may offer a more reliable alternative to CDGT for characterizing Clabile in unsaturated soils.

2.
Environ Sci Pollut Res Int ; 31(21): 30399-30414, 2024 May.
Article in English | MEDLINE | ID: mdl-38607481

ABSTRACT

The rapid increase in soil acidity coupled with the deleterious effects of cadmium (Cd) toxicity had led to a decline in worldwide agricultural production. Rice absorbs and accumulates Cd(II) from polluted paddy soils, increasing human health risks throughout the food chain. A 35-day hydroponic experiment with four japonica and four indica (two each of them tolerant and sensitive cultivars) was conducted in this study to investigate the adsorption and absorption of Cd(II) by rice roots as related with surface chemical properties of the roots. The results showed that the three chemical forms of exchangeable, complexed, and precipitated Cd(II) increased with the increase in Cd(II) concentration for all rice cultivars. The roots of indica rice cultivars carried more negative charges and had greater functional groups and thus adsorbed more exchangeable and complexed Cd(II) than those of japonica rice cultivars. This led to more absorption of Cd(II) by the roots and greater toxicity of Cd(II) to the roots of indica rice cultivars and more inhibition of Cd(II) stress on the growth of the roots and whole plants of indica rice cultivars compared with japonica rice cultivars, which was one of the main reasons for more declines in the biomass and length of indica rice roots and shoots than japonica rice cultivars. Cd(II) stress showed more toxicity to the sensitive rice cultivars and thus greater inhibition on the growth of the cultivars due to more exchangeable and complexed Cd(II) adsorbed by their roots induced by more negative charges and functional groups on the roots compared with tolerant rice cultivar for both indica and japonica, which resulted in greater decreases in the biomass and length of roots and shoots as well as chlorophyll contents of the sensitive cultivars than the tolerant cultivars. The roots of sensitive rice cultivars also absorbed more Cd(II) than tolerant rice cultivars due to the same reasons as above. These findings will provide useful references for the safe utilization and health risk prevention of Cd-contaminated paddy fields.


Subject(s)
Cadmium , Oryza , Plant Roots , Soil Pollutants , Oryza/metabolism , Cadmium/metabolism , Cadmium/toxicity , Plant Roots/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Adsorption , Soil/chemistry
3.
Ecotoxicol Environ Saf ; 273: 116117, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377780

ABSTRACT

Field rapid determination of soil accessible Cr(Ⅵ) is of great significance for on-site assessment and decision-making about the health risks of contaminated sites. When the thickness of solutions with various concentrations of Cr(Ⅵ) is constant, there would be a quantitative relationship between the chromogenic difference of Cr(Ⅵ) solutions and the concentration of Cr(Ⅵ). The chromogenic difference could be described by Red (R), Green (G), Blue (B) values. Based on the chromogenic reaction between 1,5-diphenylcarbazide and Cr(Ⅵ), this study first established the calibration curve between the chromogenic difference and the concentration of Cr(Ⅵ) in standard solution with or without 0.01 M CaCl2, using an RGB color sensor. This is the subsequent determination basis of the method for rapidly assessing accessible Cr(Ⅵ) in the field (M-RGB). Then, the concentration of accessible Cr(Ⅵ) of contaminated soil with "hand-shaking + standing" field extraction method was compared with "end-over-end shaking" laboratory extraction method. Finally, the accessible Cr(Ⅵ) of contaminated soil extractants was determined via M-RGB integrating the field extraction method. Results indicated there was a highly significant linear relationship between colorimetric difference value (∆E) and Cr(Ⅵ) concentration in the range of 0.1-3 mg/L (R2 > 0.99, P < 0.01), based on the Euclidean formula for calculating ∆E. The "hand-shaking + standing" field extraction method was effective in obtaining accessible Cr(Ⅵ) extractants with or without 0.01 M CaCl2, with the high extraction efficiency within 100±1%. The concentrations of accessible Cr(Ⅵ) in various polluted soils determined by M-RGB were consistent with that determined by the ultraviolet-visible spectrophotometry, with the relative error within ±5%, and the relative standard deviation ≤ 20%. The spiked recovery experiments showed that the recovery of M-RGB was between 95% and 105%, which means M-RGB could realize the trace analysis for accessible Cr(Ⅵ) in the field.


Subject(s)
Chromium , Soil , Calcium Chloride , Chromium/analysis , Environmental Pollution/analysis
4.
Environ Pollut ; 344: 123348, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38219896

ABSTRACT

Field rapid determination of soil accessible Cu(Ⅱ) was important for environmental safety and human health risk assessment. In this study, an inexpensive red, green, and blue (RGB) color sensor was used for quantitative color difference analysis of the colored solution for soil accessible Cu(Ⅱ) with bis-cyclohexanone oxalydihydrazone as color reagent to develop a new method for analyzing soil accessible under field conditions. First, the calibration curve for RGB color sensor method was established in the standard solutions of Cu(II). Then the "hand shaking + standing" field extraction method for accessible Cu(Ⅱ) was developed. Finally, the method was applied in contaminated soils in the laboratory and in the field, and set the values determined by atomic absorption spectroscopy (AAS) as the standard ones. Results indicated that in the range of 0.1-5 mg L-1 Cu(II), the RGB Euclidean chromogenic difference values were directly linear correlated with the concentration of Cu(II) (R2 > 0.999). The interference of Fe(Ⅲ) and Mn(Ⅱ) could be eliminated by adding citric acid. The "hand shaking + standing" field extraction method could effectively extract the accessible Cu(Ⅱ) from soil with the high extraction rates. The concentrations of accessible Cu(II) in various polluted soils determined by RGB color sensor method were consistent with that determined by AAS, with the relative error within ±5%, the relative standard deviation ≤ 20%. The recovery of Cu(II) in RGB color sensor method was between 97% and 105%, which could meet the requirements of trace analysis of accessible Cu(Ⅱ) in the field. The high accuracy and precision of RGB color sensor method was reconfirmed in the rapid field quantitative assessment of soil accessible Cu(Ⅱ). Due to that the RGB color sensor was low cost, rechargeable, portable, mobile, ambient light resistant, the method would have a great potential for the determination of accessible Cu(Ⅱ) in contaminated soils.


Subject(s)
Ferric Compounds , Soil , Humans , Soil/chemistry , Spectrophotometry, Atomic
5.
Chemosphere ; 349: 140896, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070606

ABSTRACT

Chitosan is a biodegradable polymer with a vast range of applications. Along with its metal composites, chitosan has been applied in the remediation of polluted soils as well as a biofertilizer. However, little attention has been given to the degradation of chitosan composites in soil and how they affect soil respiration rate and other physicochemical parameters. In this study, the degradation of chitosan and its composites with gibbsite and hematite in an acidic Ultisol and the effect on urea (200 mg N kg-1) transformation were investigated in a 70-d incubation experiment. The results showed that the change trends of soil pH, N forms, and CO2 emissions were similar for chitosan and its composites when applied at rates <5 g C kg-1. At a rate of 5 g C kg-1, the C and N mineralization trends suggested that the chitosan-gibbsite composite was more stable in soil and this stability was owed to the formation of a new chemical bond (CH-N-Al-Gibb) as observed in the Fourier-transform infrared spectrum at 1644 cm-1. The mineralization of the added materials significantly increased soil pH and decreased soil exchangeable acidity (P < 0.01). This played an important role in decreasing the amount of H+ produced during urea transformation in the soil. The soil's initial pH was an important factor influencing C and N mineralization trends. For instance, increasing the initial soil pH significantly increased the nitrification rate and chitosan decomposition trend (P < 0.01) and thus, the contribution of chitosan and its composites to increase soil pH and inhibit soil acidification during urea transformation was significantly decreased (P < 0.01). These findings suggest that to achieve long-term effects of chitosan in soils, applying it as a chitosan-gibbsite complex is a better option.


Subject(s)
Chitosan , Soil , Soil/chemistry , Carbon/chemistry , Nitrogen/analysis , Urea , Hydrogen-Ion Concentration
6.
Chemosphere ; 336: 139274, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343637

ABSTRACT

Hexavalent chromium (Cr(VI)) is a toxic heavy metal and its mobility and bioaccessibility in soils are influenced by soil properties. In this study, the soil pH and organic carbon contents of Ultisol, Alfisol, and Inceptisol were adjusted before they were polluted with 230 mg kg-1 Cr(VI). Alkaline digestion, sequential extraction, and an in vitro experiment were conducted to study the valence state, species, and bioaccessibility of Cr in the soils. The results showed that a high soil pH was not favorable for reduction of Cr(VI); therefore the Cr(VI) and exchangeable Cr contents were positively related to soil pH. Soil organic carbon promoted the reduction of Cr(VI). Almost all Cr(VI) was reduced to Cr(III) when the soil organic carbon content reached 10 g kg-1. Chromium bioaccessibility in simulated gastric and intestinal phase solutions was influenced by Cr(VI) and Cr(III) adsorption/desorption, dissolution/precipitation, and redox reactions. Chromium bioaccessibility differences between the gastric and intestinal phases were associated with the Cr(VI)/Cr(III) ratio. Acidic conditions and a high organic carbon content promoted the conversion of Cr(VI) to Cr(III). When soil pH was increased from 4.01 to 5.85, Cr(VI) in Alfisol without the addition of humic acid increased from 96.38 to 174.78 mg kg-1, the exchangeable Cr proportion increased from 9.7% to 22.6%, and Cr bioaccessibility increased from 41.29% to 49.14% in the gastric phase and from 41.32% to 48.24% in the intestinal phase. When the organic carbon content increased from 3.95 to 9.28 g kg-1 in Alfisol, Cr(VI) content decreased from 167.66 to 20.52 mg kg-1, which led to a decrease in Cr bioaccessibility from 49.15% to 13.8% in the gastric phase and from 45.85% to 7.67% in the intestinal phase. Therefore, acidic conditions and increasing soil organic carbon levels can reduce the health risk posed by Cr in soils.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Carbon/chemistry , Soil Pollutants/analysis , Chromium/chemistry
7.
Sci Total Environ ; 874: 162464, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858227

ABSTRACT

Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.


Subject(s)
Nitrification , Soil , Soil/chemistry , Bacteria , Charcoal/chemistry , Arachis , Hydrogen-Ion Concentration , Soil Microbiology
8.
J Environ Manage ; 334: 117476, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36773452

ABSTRACT

Investigation of the inherent relationship between soil physicochemical properties and pollutant's bioaccessibility (BAc) by analyzing different soil types may produce erroneous results or bias, owing to the complexity of natural soil characteristics. However, use of single factor analysis (e.g., soil pH, organic matter) facilitates evaluation of the transition. In this study, the inherent relationship between soil properties and the BAc of molybdenum (Mo) was evaluated in two typical variable-charge soils (Ferralosol and Ferrosol) and constant-charge soils (Alfisol and Inceptisol) spiked with Mo after adjusting their pH and organic carbon content. The Unified Bioaccessibility Research Group of Europe (BARGE) Method (UBM) was applied to evaluate the BAc of Mo in the gastric and intestinal phase (GP and IP, respectively). Isothermal adsorption experiment, Tessier sequential extraction, and field emission scanning electron microscope-energy dispersive spectroscopy (FESEM-EDS) analysis were conducted on these spiked soils. The results indicated that the BAc of Mo in IP (27.42-80.41%) was significantly higher than that in GP (2.52-28.53%). A significantly lower level of BAc of Mo was found in the variable-charge soils, when compared with that in the constant-charge soils. Furthermore, significant negative correlations were identified between the BAc and adsorption of Mo, which decreased with soil pH. These negative correlations can be attributed to the increase in soil negative charge density and enhancement of Mo desorption by hydroxyl, which reinforce the repulsion between Mo and soil particles with increasing soil pH; this was further confirmed by the decrease in Mo adsorption with Alfisol pH. The Mo fractions and FESEM-EDS patterns confirmed that the BAc of Mo in GP was negatively correlated with soil organic carbon (SOC) content, possibly owing to an increase in Mo retention by SOC. These findings indicated that the health risk of Mo contamination in low pH and SOC-rich variable-charge soil is relatively low, thus providing references for rationalizing risk assessment and remediating Mo-polluted soil.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Molybdenum/analysis , Carbon/analysis , Soil Pollutants/chemistry , Biological Availability , Hydrogen-Ion Concentration
9.
J Sci Food Agric ; 103(7): 3531-3539, 2023 May.
Article in English | MEDLINE | ID: mdl-36788119

ABSTRACT

BACKGROUND: Manganese (Mn) is an essential micronutrient for plants, whereas excess Mn(II) in soils leads to its toxicity to crops. Mn(II) is adsorbed onto plant roots from soil solution and then absorbed by plants. Root charge characteristics should affect Mn(II) toxicity to crops and Mn(II) uptake by the roots of the crops. However, the differences in the effects of root surface charge on the uptake of Mn(II) among various crop species are not well understood. RESULTS: The roots of nine legumes and six non-legume poaceae were obtained by hydroponics and the streaming potential method and spectroscopic analysis were used to measure the zeta potentials and functional groups on the roots, respectively. The results indicate that the exchangeable Mn(II) adsorbed by plant roots was significantly positively correlated with the Mn(II) accumulated in plant shoots. Legume roots carried more negative charges and functional groups than non-legume poaceae roots, which was responsible for the larger amounts of exchangeable Mn(II) on legume roots in 2 h and the Mn(II) accumulated in their shoots in 48 h. Coexisting cations, such as Ca2+ and Mg2+ , were most effective in decreasing Mn(II) taken up by roots and accumulated in shoots than K+ and Na+ . This was because Ca2+ and Mg2+ could compete with Mn(II) for active sites on plant roots more strongly compared to K+ and Na+ . CONCLUSION: The root surface charge and functional groups are two important factors influencing Mn(II) uptake by roots and accumulation in plant shoots. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Poaceae , Manganese , Biological Transport , Crops, Agricultural , Vegetables , Soil , Plant Roots
10.
Environ Pollut ; 317: 120721, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36436663

ABSTRACT

Studies analyzing the in vitro bioaccessibility (BAc) of heavy metals in biochar-amended soils are currently lacking. The present study aimed to assess the metal BAc in Cd- and Pb-spiked acidic Ultisol samples treated individually with 2% (w/w) maize, rice, wheat, soybean, and pea straw-derived biochar. The results indicate that the Cd-BAc simulated in gastric phase (GP) decreased from 78.4% to 66.5-72.3% and the Pb-BAC decreased from 74.3% to 67.2-69.2%; however, the Cd-BAc in the intestinal phase (IP) decreased from 35.6% to 27.9-33.5% and the Pb-BAc decreased from 34.7% to 29.7-32.9% after 120 d of incubation with biochar application compared to the un-amended Ultisol. The Cd- and Pb-BAc in both GP and IP were significantly negatively correlated with soil pH, CEC, and organic carbon (P < 0.05), which increased after biochar application. The soybean straw-derived biochar amendment has the greatest potential to decrease the BAc of Cd and Pb in the GP and IP, owing to the highest level of CEC, SOC, TC and TN among all soil samples. Moreover, the BAc was positively correlated with the exchangeable, and exchangeable + carbonate-bound Cd and Pb fractions (P < 0.05), indicating these fractions had a dominant influence on the BAc of cationic heavy metals. Therefore, crop straw-derived biochar amendment can decrease the BAc of Cd and Pb in acidic Ultisol, and thus mitigate the health risks posed by these metals from incidental ingestion.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Cadmium/analysis , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal , Soil , Acids
11.
Chemosphere ; 313: 137570, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563731

ABSTRACT

Phyllosilicate minerals are the important components in soils and an important source of activated aluminum (Al) during soil acidification. However, the mechanisms for Al activation in phyllosilicate minerals were not understood well. In this paper, the effect of phyllosilicate surface hydroxyl groups on Al activation during acidification was studied after the minerals were modified with inorganic and organic materials. After modification of kaolinite, montmorillonite, and illite with fulvic acid (FA-), iron oxide (Fe-), Fe combined with FA (Fe-FA-), and siloxane (Si-O-), the interlayer spaces were altered. For instance, when modified with Fe, Fe entered the interlayer spaces of kaolinite and montmorillonite and changed the interlayer spaces of both minerals but did not affect that of illite. Also, the other modification methods had significant effects on the interlayer space of montmorillonite but not on kaolinite and illite. It was observed that all the modification strategies inhibited Al activation during acidification by reducing the number of hydroxyl groups on the mineral surfaces and inhibiting protonation reactions between H+ and hydroxyl groups. Nevertheless, the inhibition effect varies with the type of phyllosilicate mineral. For kaolinite (Kao), the inhibition effect of the different modification methods on Al activation during acidification followed: Fe-FA-Kao > Fe-Kao > Si-O-Kao > FA-Kao. Additionally, for montmorillonite (Mon), the inhibition effect was in the order: Si-O-Mon > Fe-Mon > Fe-FA-Mon > FA-Mon, while for illite, it was: Fe-illite > Si-O-illite ≈ Fe-FA-illite > FA-illite. Thus, the hydroxyl groups on the surfaces and edges of phyllosilicate minerals play an important role in the activation of Al from the mineral structure. Also, the protonation of hydroxyl groups may be the first step during Al activation in these minerals. The results of this study can serve as a reference for the development of new technologies to inhibit soil acidification and Al activation.


Subject(s)
Aluminum , Kaolin , Kaolin/chemistry , Clay , Bentonite/chemistry , Aluminum Silicates/chemistry , Adsorption , Minerals/chemistry , Soil , Hydrogen-Ion Concentration
12.
Chemosphere ; 309(Pt 1): 136749, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36209864

ABSTRACT

Phosphorus (P) availability in highly weathered soils is significantly influenced by the contents of iron (Fe)/aluminum (Al) oxides, clay minerals, and organic matter. With the increasing interest in biofertilizers (e.g. chitosan), it is important to understand how they affect P adsorption profiles on colloids of weathered soils rich in Fe/Al oxides. Thus, the effect of chitosan on the adsorption of P to colloids of hematite, gibbsite, Oxisol, and Ultisol was studied through electrokinetic measurements, spectroscopic analysis, and adsorption edge/isotherm profiles. The presence of chitosan significantly improved the surface positive charge and the decreasing trend of surface positive charge was slower for chitosan-treated colloids compared to the control with increasing pH. At pH 5.0, all the colloids were positively charged, with the oxides containing more positve charges than the soil colloids. At this pH value, the surface coverage capacity of P was 99.1, 61.6, 50.5, and 37.5 mmol kg⁻1 for Oxisol, Ultisol, hematite, and gibbsite, respectively. This suggests that clay minerals in soil colloids were vital in enhancing P adsorption. In the presence of chitosan, the surface coverage capacity of P was increased by 111%, 173%, 647%, and 488% for Oxisol, Ultisol, gibbsite, and hematite, respectively. Drawing inferences from spectroscopic analysis, citric acid desorption profile, and zeta potential analysis, we suggest that chitosan (CH) enhanced P adsorption by promoting the formation of (i) citric acid "undisplaceable" inner-sphere P complexes such as [Colloid-OP-O-CH] and [Colloid-OP-N-CH], (ii) citric acid "displaceable" outer-sphere P complexes such as {[Colloid-O-CH]-OP} and {[Colloid-N-CH]-OP}, and (iii) water "leachable or soluble" P complexes such as {[Colloid-CH]+PO4³â»} and {[Colloid-OP]⁻CH+}. Thus, applying chitosan as a biofertilizer (source of N) along with P in highly weathered soils could improve P availability while reducing P leaching.


Subject(s)
Chitosan , Soil Pollutants , Phosphates/chemistry , Soil Pollutants/analysis , Clay , Aluminum , Soil/chemistry , Colloids/chemistry , Phosphorus , Minerals , Iron , Oxides , Citric Acid , Water
13.
Environ Pollut ; 313: 120175, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36115484

ABSTRACT

To develop more green, practical and efficient biochar amendments for acidic soils, chitosan-modified biochar (CRB) and alginate-modified biochar (ARB) were prepared, and their effects on promoting soil pH buffering capacity (pHBC) and immobilizing cadmium (Cd) in the paddy soils were investigated through indoor incubation experiments. The results of Fourier transform infrared spectroscopy and Boehm titration indicated that the introduction of chitosan and sodium alginate effectively amplified the functional groups of the biochar, and improved acid buffering capacity of the biochar. Since there was a plateau region between pH 4.5 and 5.5 in acid-base titration curve of the CRB, adding this biochar to acidic paddy soils apparently improved the pHBC and enhanced the acidification resistance of the paddy soils. The addition of ARB enhanced the reduction reactions during submerging and weakened the oxidation reactions during draining, thus retarded the decline of paddy soil pH during drainage. Furthermore, the pH of the paddy soils with ARB addition was higher at the end of draining, which reduced the activity of soil Cd. Considering the environmental sustainability of chitosan and sodium alginate and convenience of preparation method, biochars modified with these two materials provided alternatives for acidic paddy soil amelioration and heavy metal immobilization. However, the additional experiments should be conducted under field conditions to confirm practical application effects in the future.


Subject(s)
Chitosan , Metals, Heavy , Oryza , Soil Pollutants , Acids/chemistry , Alginates , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Cadmium/analysis , Charcoal/chemistry , Hydrogen-Ion Concentration , Oryza/chemistry , Soil/chemistry , Soil Pollutants/analysis
14.
J Sci Food Agric ; 102(15): 6984-6991, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35679427

ABSTRACT

BACKGROUND: Aluminum (Al) toxicity caused by soil acidification is the main constraint for crop growth in tropical and subtropical areas of southern China. The critical values of soil solution Al3+ activity and pH for crops in acidic soils can provide a useful reference for soil acidity amelioration. RESULTS: A pot experiment in a greenhouse was conducted to investigate the critical values of soil solution Al3+ activity and pH for canola and maize in an Ultisol and an Alfisol. The critical values of soil solution Al3+ activity in Ultisol and Alfisol for canola were 1.5 and 10.0 µmol L-1 , and 13.9 and 30.4 µmol L-1 for maize, respectively. The Al tolerance varied with soil type for the same variety of crop. There was more biomass of roots and shoots and higher plant height under the same Al3+ activity, and thus greater critical values of soil solution Al3+ activity for both crops in Alfisol than those in Ultisol, owing to higher Ca2+ /Al3+ , Mg2+ /Al3+ and K+ /Al3+ ratios in soil solution caused by higher cation exchange capacity and exchangeable base cations in Alfisol, when compared with those in Ultisol. The critical values of soil solution pH for canola and maize in Ultisol were 5.09 and 4.72, respectively; while those in Alfisol were 4.87 and 4.54, respectively. CONCLUSION: The critical values of Al3+ activity were higher for maize than for canola and the critical values for both crops were higher in Alfisol than in Ultisol. The critical soil pH for both crops showed opposite trends to soil Al3+ activity. © 2022 Society of Chemical Industry.


Subject(s)
Brassica napus , Soil Pollutants , Soil , Aluminum/analysis , Zea mays , Soil Pollutants/analysis , Acids , Crops, Agricultural , Cations , Hydrogen-Ion Concentration
15.
Environ Sci Pollut Res Int ; 29(45): 68680-68691, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35543790

ABSTRACT

Lead (Pb) is one of the top metal pollutants worldwide, and its distribution between liquid and solid phases of soils is strongly controlled by its adsorption on minerals, organic matter, and their composites. This paper presented the effect of fulvic acid (FA) coexistence on the distribution of Pb(II) at the solid-liquid interface of four minerals, which provided reference for how to use humic substances to remove toxic Pb(II) in soils. The free Pb2+ of suspensions, measured by Pb ion selective electrode, was used to characterize the complexation of FA with Pb2+ at various pH. The adsorption isotherms of Pb(II) by montmorillonite, kaolinite, goethite, and gibbsite with and without FA were studied with batch experiments. Results indicated that the free Pb2+ decreased and complexed Pb(II) increased with the increase of FA concentration in Pb(II)-FA solutions, whether the initial concentration of Pb(II) was 0.1 or 1 mM. Pb2+ hydrolysis was low and the free Pb2+ concentration in pure lead solution without FA was generally unchanged with increasing solution pH at pH < 6.0. But free Pb2+ decreased with the increase of pH in the presence of FA, suggesting that the complexation ability of FA with Pb2+ increased with the increase of solution pH. The adsorption of Pb(II) by the minerals without FA followed the order: montmorillonite > kaolinite ≈ goethite > gibbsite at pH5.0. The Pb(II) adsorption by montmorillonite and kaolinite significantly enhanced with 1 g/L FA, while significantly inhibited with 3 g/L FA at low initial Pb(II) concentration. However, the effect of FA on Pb(II) adsorption by montmorillonite was greater than that of kaolinite, which was mainly related to the crystal layer structure, adsorption area, and cation exchange capacity of the minerals. The Pb(II) adsorption by goethite and gibbsite was significantly enhanced by the addition of both 1 g/L and 3 g/L FA, and the enhancement was more evident in goethite system. The effect of FA on the distribution of Pb(II) between solid and liquid phases of the minerals was determined by the factors such as the initial concentration ratio of FA to Pb(II), the adsorption capacity of minerals for FA, and the number of soluble complexes of FA with Pb2+. Therefore, the distribution of FA between solid and liquid of four minerals affected the distribution of Pb(II) between solid and liquid phases of the minerals greatly. The results can provide an important reference for understanding the distribution of Pb(II) and the dynamics and mobility of active components in polluted soils.


Subject(s)
Iron Compounds , Soil Pollutants , Adsorption , Bentonite/chemistry , Benzopyrans , Cations , Humic Substances , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Kaolin/chemistry , Lead , Minerals/chemistry , Soil , Soil Pollutants/analysis
16.
Chemosphere ; 301: 134674, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35461893

ABSTRACT

To explore the effects of the increases in pH and pH buffering capacity (pHBC) induced by crop residue biochars on the changes in soil available Cd content, six acidic paddy soils developed from different parents were amended with seeded sunflower plate biochar (SSPBC), peanut straw biochar (PSBC) and corn straw biochar (CSBC). The pH, pHBC, and available Cd of the soils were measured after laboratory incubation. The results showed that the incorporation of crop residue biochars led to the increases in soil pH and pHBC, but a decrease in soil available Cd content. The decreasing order of available Cd content was SSPBC > PSBC > CSBC and was consistent with the changes in soil pH induced by the biochars. During submerging and draining, soil pH increased first and then declined, however the content of available Cd decreased first and then increased significantly. Soil pH in the treatments with biochars showed little change during draining, which was different from the control without the biochars added. This was attributed to the enhancing effect of the biochars on soil pHBC. Also, there was a significant negative correlation between the change in available Cd content and soil pHBC during submerging/draining alternation and suggested that higher pHBC corresponded to smaller soil available Cd content. Consequently, the amount of Cd absorbed by rice was reduced, thereby reducing the potential risk of soil Cd to humans. These results can provide useful references for the remediation of Cd-contaminated paddy soils.


Subject(s)
Oryza , Soil Pollutants , Acids/chemistry , Arachis , Cadmium/analysis , Charcoal/chemistry , Humans , Hydrogen-Ion Concentration , Oryza/chemistry , Soil/chemistry , Soil Pollutants/analysis , Zea mays
17.
Ecotoxicol Environ Saf ; 234: 113409, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35286955

ABSTRACT

Incubation experiments were conducted to investigate the influencing factors of pH variation in different paddy soils during submerging/draining alternation and the relationship between pH buffering capacity (pHBC) and Cd speciation in ten paddy soils developed from different parent materials (including 8 acid paddy soils and 2 alkaline paddy soils). The soil pHBC and the changes in soil pH, Eh, Fe2+, Mn2+, SO42- and Cd speciation were determined. The results showed that there was a significant positive correlation between cation exchange capacity (CEC) and pHBC of these paddy soils, indicating that soil CEC is a key factor affecting the pHBC of paddy soils. The contribution of Fe(III) oxide reduction to H+ consumption is far greater than the reduction of Mn(IV)/Mn(III) oxides and SO42- during the submerging. For example, the contribution of the reduction of manganese oxides, SO42- and iron oxides to H+ consumption in the paddy soils from Anthrosol at 15 d submerging was 1.2%, 11.6% and 87.2%, respectively. This confirms that the reduction of Fe(III) oxides plays a leading role in increasing soil pH. Importantly, we noticed that during submerging, soil pH was increased and resulted in the content of available Cd in soils being reduced. This was due to the transformation of Cd to less active forms. Also, there was a significant positive correlation between the change rate of available Cd, the percentage of acid extractable Cd and pH variation. This suggests that the variation in soil pH was responsible for the transformation of Cd speciation. In addition, the change rate of available Cd and the percentage of acid extractable Cd concentration were significantly negatively correlated with soil pHBC. The soil with higher pHBC experienced less pH change, and thus the change rate of available Cd and the percentage of acid extractable Cd concentration were less for the soil. The results of this study can provide a basis for the remediation of Cd-contaminated acidic paddy soils.

18.
Environ Geochem Health ; 44(11): 4191-4200, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35067762

ABSTRACT

The consortium of minerals and organic matter notably alters and affects minerals' surface characteristics and nutrients providence. Organic matter such as biochar can modify the availability status of macronutrients like phosphorus (P). Despite some investigation, the adsorption/desorption of P with pure iron (hydr)oxides and the probable mechanisms involved are still unknown. In the present study, the goethite/hematite or goethite-biochar/hematite-biochar complexes were prepared, and a batch experiment with different P concentrations, time spell, pH, and ionic strength is performed to evaluate the sorption characteristics of P. The results of our study suggest that the P adsorption on mineral surface decreased with the increasing pH. Furthermore, the coexistence of biochar and minerals significantly inhibits P adsorption on the minerals surface. The results of Languimner and Freundlich's equations signify that the biochar-minerals complexes have heterogeneous adsorption sites and the presence of biochar reduces P adsorption on minerals surface. Among four biochars including peanut straw biochar (PC (B1)), rice straw biochar (RC (B2)), canola straw biochar (CC (B3)), and soybean straw biochar (SC (B4)), PC was more effective than other biochars to inhibit P adsorption on minerals surfaces.


Subject(s)
Phosphates , Soil , Soil/chemistry , Charcoal/chemistry , Minerals/chemistry , Adsorption , Phosphorus , Iron , Oxides
19.
Environ Pollut ; 293: 118588, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34843849

ABSTRACT

Biochar was prepared from rice straw and modified with 15% H2O2 and 1:1 HNO3/H2SO4, respectively. The unmodified biochars and HCl treated biochars for carbonate removal were used as control. The biochars were added to the acid paddy soil collected from Langxi, Anhui Province, China at the rate of 30 g/kg. The paddy soil was flooded and then air-dried, and soil pH and Eh were measured in situ with pH electrode and platinum electrode during wet-dry alternation. Soil pH buffering capacity (pHBC) was determined by acid-base titration after the wet-dry treatment. Then, the simulated acidification experiments were carried out to study the changing trends of soil pH, base cations and exchangeable acidity. The results showed that soil pHBC was effectively increased and the resistance of the paddy soil to acidification was apparently enhanced with the incorporation of H2O2- and HNO3/H2SO4-modified biochars. Surface functional groups on biochars were mainly responsible for enhanced soil resistance to acidification. During soil acidification, the protonation of organic anions generated by dissociation of these functional groups effectively retarded the decline of soil pH. The modification of HNO3/H2SO4 led to greater increase in carboxyl functional groups on the biochars than H2O2 modification and thus HNO3/H2SO4-modified biochars showed more enhancement in soil resistance to acidification than H2O2-modified biochars. After a wet-dry cycle, the pH of the paddy soil incorporated with HNO3/H2SO4-modified biochar increased apparently. Consequently, the addition of HNO3/H2SO4-modified biochar can be regarded as a new method to alleviate soil acidification. In short, the meaning of this paper is to provide a new method for the amelioration of acid paddy soils.


Subject(s)
Hydrogen Peroxide , Soil , Charcoal , Hydrogen-Ion Concentration
20.
Environ Pollut ; 290: 118001, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34419861

ABSTRACT

Ion sorption on soil and sediment has been reported to be potentially affected by bacteria which may interact both physically and chemically with solid surfaces. However, whether and how bacteria affect the sorption of inorganic phosphate (P) on soil colloids remains poorly known. Here, we comparably investigated the P sorption on four soil colloids (three highly weathered soils including two Oxisols and one Ultisol and one weakly weathered soil Alfisol) and their complexes with Bacillus subtilis and Pseudomonas fluorescens. Batch experiments showed a notable reduction in P sorption on the colloids of highly weathered soils by the two bacteria at varying P concentrations and pHs; whereas that on the colloids of Alfisol appeared to be unaffected by the bacteria. The inhibitory effect was confirmed by both greater decline in P sorption at higher bacteria dosages and the ability of the bacteria to desorb P pre-adsorbed on the colloids. Further evidence was given by isothermal titration calorimetric experiments which revealed an alteration in enthalpy change caused by the bacteria for P sorption on Oxisol but not for that on Alfisol. The B. subtilis was more efficient in suppressing P sorption than the P. fluorescens, indicating a dependence of the inhibition on bacterium type. After association with bacteria, zeta potentials of the soil colloids decreased considerably. The decrease positively correlated with the decline in P sorption, regardless of soil and bacterium types, demonstrating that the increment in negative charges of soil colloids by bacteria probably contributed to the inhibition. In addition, scanning electron microscopic observation and the Derjaguin-Landau-Verwey-Overbeek theory prediction suggested appreciable physical and chemical interactions between the bacteria and the highly weathered soil colloids, which might be another contributor to the inhibition. These findings expand our understandings on how bacteria mobilize legacy P in soils and sediments.


Subject(s)
Soil Pollutants , Soil , Adsorption , Bacillus subtilis , Colloids , Phosphates , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...